

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 62

Ramita Mehta*, Ms.Upasana Garg**
*Department of Computer Science, GURU KASHI University, Talwandi Sabo

Email: rimita.mht9@gmail.com

ABSTRACT

The main objective of this paper is to implement the real time scheduling algorithms and discuss the advantages

and disadvantages of the same..I am compare the scheduling algorithm in which tasks execute.in this no

efficient scheduling algorithms exit for optimal solution..I am trying to solve this problem by taking new

algorithm i.e. with shortest (Arrival time + completion time) is considered and implemented on single processor

I am using assumptions and some terminology, this algorithm is based on preemption .

Keywords – SJF, FCFS, Scheduling, Round Robin, Preemptive, Non Preemptive

INTROUCTION

Real time system

 Any system in which the time at which output is produced is significant. This is

usually because the input corresponds to some movement in the physical world, and the

output has to relate to that same movement. The lag from input time to output time must be

sufficiently small for acceptable timeliness.

The correct behavior of a real-time system depends as much on the timing of computations as

it does on the results produced by those computations. Results delivered too late may be

useless, or even harmful. Real-time systems are in widespread use and can be found in such

application domains as industrial automation, process control, C3 (Communications,

Command, and Control), and multimedia. There are two distinct types of systems in this

field: hard real-time systems and soft real-time systems. Hard real-time systems are those in

which it is imperative that all computations are strictly performed within the specified time,

regardless of the operating conditions. Failure to meet the timing constraints of even one task

may invalidate the correctness of the entire system. Soft real-time systems, in contrast, are

those in which strict adherence to the timing constraints of tasks are not always guaranteed.

 The most important attribute of a task in a real-time system is its timing

constraints. Such timing constraints must be expressed precisely. A deadline is the most

widely used form of a timing constraint. It offers a binary view of the usefulness of a task’s

completion with respect to a single point in time: the firm deadline. The completion of a task

is of no value beyond the deadline and, conversely, would yield full benefit any time prior to

Real Time System Fault Tolerance

Scheduling Algorithms

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 63

that deadline. Such deadline-based systems have a wide range of applications and sufficiently

address the requirements of a large sector of the real-time industry. The notion of deadline is

particularly well-suited for hard real-time environments where the modes of system

operations are mutually exclusive and likewise binary in nature, the system operates correctly

if all deadlines are always met, incorrectly otherwise, a task succeeds if it meets its deadline

and fails otherwise. For example, the task of deploying the parachutes of the Martian Lander

by its on-board control systems must be completed by a hard deadline, else the entire system

catastrophically fails. Deadlines also may be used in soft real-time systems in which missed

deadlines are to be expected. The operational optimality criteria for these systems can

consequently be defined in terms of met or missed deadlines. The operational objective for

such systems can be, for instance, to minimize the number of missed deadlines

Hard real time system

In hard real time system a hard dead line is a completion time constraint, such that if

the deadline is satisfied, i.e., the task’s execution point reaches the end of the deadline scope

before the deadline time occurs, then the time constrained portion of the task’s execution is

timely, otherwise that portion is not timely. E.g. in Autopilot system microprocessor must

control the airbags etc in case of out of control, nuclear plant control etc.

Firm real time system

Where the consequences are not severe, but result produced after deadline becomes

useless, e.g. airline reservation, banking system etc.

Soft real time systems

A Soft deadline is a completion time constraint, such that if the deadline is satisfied

i.e., the task execution point reaches the end of the deadline scope before the deadline time

occurs then the time constrained portion of the task’s execution is more timely. Thus hard

dead line is the special case of soft deadline. E.g. telephone switching it makes the connection

before process execution, Image processing applications etc where utility of result decreases

over time after deadline expires.

There are a large variety of real time systems but all have common characteristics,

which differentiate them from non-real time systems.

 1. Time Constraint: One very common form of time constraint is deadline

associated with tasks. A task deadline specifies the time before which the task must complete

and produce results. It is the responsibility of the RTOS, schedulers particularly, to ensure

that all tasks meet their respective deadline.

2. Safety-Criticality: For traditional non-real time systems safety and reliability

are independent issues. However, in many real time systems these two issues are intricately

bound together making them safety-critical.

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 64

Applications of real time system

Embedded real-time systems, commercial transaction systems, transportation systems,

and military/space systems - to name a few. The supporting research includes system

architecture, design techniques, coding theory, testing, and validation, proof of correctness,

modeling, software reliability, operating systems, parallel processing, and real-time

processing. These areas often involve widely diverse core expertise ranging from formal

logic, mathematics of stochastic modeling, graph theory, hardware design and software

engineering. Redundancy has long been used in fault-tolerant and adaptive systems.

However, redundancy does not inherently make a system fault-tolerant and adaptive; it is

necessary to employ fault-tolerant methods by which the system can tolerate hardware

component failures, avoid or predict timing failures, and be reconfigured with little or

graceful degradation in terms of reliability and functionality. Early error detection is clearly

important for real-time systems; error is an abbreviation for erroneous system state, the

observable result of a failure. The error detection latency of a system is the interval of time

from the instant at which the system enters an erroneous state to the instant at which that

states are detected. Keeping the error detection latency small provides a better chance to

recover from component failures and timing errors, and to exhibit graceful reconfiguration.

However, a small latency alone is not sufficient; fault-tolerant methods need to be provided

with sufficient information about the computation underway in order to take appropriate

action when an error is detected. Such information can be obtained during system design and

implementation. In current practice, the design and implementation for real-time systems

often does not sufficiently address fault tolerance and adaptive-ness issues. Proper task

allocation and an effective uniprocessor scheduling can improve the performance of a RTS.

The ability to deliver service is called dependability. The schema of dependability

computing Means to attain dependability has been grouped by researchers into four major

categories:

 Fault prevention/avoidance:

 Fault prevention aims at reducing the creation or occurrence of faults during the

computing system life cycle. Means are used during the system design phase. Some of them

have an impact on the created system. Others prevent faults occurring during its useful life.

These means concern the system modeling tools (including implementation technologies), the

system models and the processes used to obtain these models.

 Fault tolerance:

 Fault tolerance aims at guaranteeing the services delivered by the system despite the

presence or appearance of faults. Fault tolerance approaches are divided into two classes:

 Compensation techniques for which the structural redundancy of the system masks

the fault presence, and,

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 65

 Error detection and recovery techniques, that is, detection and then resumption of the

execution either from a safe state or after the operational structure modification

(reconfiguration).Error recovery techniques are split into two sub-classes: Backward

recovery aiming at resuming execution in a previously reached safe state and

Forward recovery aiming at resuming execution in a new safe state.

 Fault removal: Fault removal aims at detecting and eliminating existing faults. Fault

removal are older than those on fault prevention. Fault removal techniques are often

considered at the end of the model definition, particularly when an operational model

of the system is complete.

 Fault Evasion: Means to estimate the present number, the future incidence, and the

likely consequences of faults.

Scheduling Algorithms are used for fault tolerance as well as fault avoidance which may be

classified as

1. First Come First Serve

2. Shortest Job First

3. Preemptive

4. Non-Preemptive

5. Round-Robin Technique

Comparison of Algorithm

Scheduling algorithms in non real time system not considering any type of dead line but in

real time system deadline is main criteria for scheduling the task, I am compare some

algorithms that fulfill the deadline constraint

Assumptions

 Set of tasks Ti every task has attribute arrival time, Deadline, Worst case execution

time.

 Priorities of the task, priorities are set according to the scheduling algorithm.

 System_clock is the clock set for the task i.e. deadline time to every task, system clock

is set according to the task requirement.

 arrival_queue is used to store the arrival task, i.e. all the arrival tasks are inserted into

the arrival_queue .

 ready_queue is the queue for inputting the ready task, i.e all the ready to execute tasks

are store in ready queue.

 remove method is used to take the task from queue.

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 66

 execute method is used to process the task, i.e. according to the turn of the task they are

get executed.

 Compare method function is used to compare the task for their deadline if deadline of

the task Ti is greater than the task Tk then task Ti is executed otherwise Tk is executed

using executed method if both having equal deadline then task with first arrival is

executed.

First Come First Serve (FCFS)

 Algorithm 1: GTFD_U (FCFS)

1. Input set of periodic tasks set S=T1, T2, T3………., Tn, Duration, Activation Time,

Deadline in arrival_queue ;

2. Calculate priorities of the task according to their deadline.// Highest priority is given

to critical delay i.e. smaller delay higher its priority.

3. for time 1,2,3………system_clock, system_clock do

4. remove task from arrival_queue and put all tasks Ti in ready_queue;

5. start with highest priority task Ti according to their deadline;

6. while(ready_queue is not empty)

{

 remove task Ti from ready_queue;

 execute task Ti on single CPU;

 compare(Ti,Tk)

 {

 if Deadline(Ti) > Deadline(Tk)

 execute Ti;

else

execute Tk on single CPU;

if Deadline(Ti) = = Deadline(Tk)

use first input of ready_queue;

 }

 }

end while

end for

end Algorithm

 Algorithm 2: RRQ_P (Round Robin Quantum Preemptive) Algorithm

1. Input set of periodic tasks set S=T1, T2, T3………., Tn, in arrival_queue Duration,

Activation Time, Deadline,Quantum;

2. Calculate priorities of the task according to their deadline.// Highest priority is given

to critical delay i.e. smaller delay higher its priority.

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 67

3. Set Quantum=n;

4. for time 1,2,3………system_clock, system_clock do

5. remove task from arrival_queue and put all tasks Ti in ready_queue;

6. start with highest priority task Ti according to their deadline;

7. while(ready_queue is not empty)

{

 remove task Ti from ready_queue;

 execute task Ti on Multiple CPU;

 if Quantum is complete

then

take another task Tk according to priority on Multiple CPU;

If task with higher priority than preempt currently executing task

preempt ();

end if

end while

end for

8. end Algorithm

I PROPOSED A NEW ALGORITHM with shortest (Arrival time + completion time) is

considered and implemented on single processor.

NEW Algorithm 1: GTFD_U (Going To Finish Deadline Uniprocessor)

1. Input set of periodic tasks set S=T1, T2, T3………., Tn, Duration, Activation Time,

Deadline in arrival_queue ;

2. Add Completion time and arrival time for each process.

3. Calculate priorities of the task according to their deadline.// Highest priority is given

to critical delay i.e. smaller delay higher its priority.

4. for time 1,2,3………system_clock, system_clock do

5. remove task from arrival_queue and put all tasks Ti in ready_queue;

6. start with highest priority task Ti according to their deadline;

7. while(ready_queue is not empty)

{

 remove task Ti from ready_queue;

 execute task Ti on single CPU;

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 68

 compare(Ti,Tk)

 {

 if Deadline(Ti) > Deadline(Tk)

 execute Ti;

else

execute Tk on single CPU;

if Deadline(Ti) = = Deadline(Tk)

use first input of ready_queue;

 }

 }

end while

end for

8.

9. end Algorithm

Analysis

Real Time Applications is an enabling technology for many current and future application

areas and becoming increasingly pervasive. The next generation real time system must be

designed to be dynamic, predictable, flexible, and reliable and to be able to deal with non

deterministic fault prone environments under rigid timing constraints. So the main problem is

to task missed their deadline, so I am trying to execute the task under their deadline, and

finding CPU load and Power consumption with remaining time of the task.

The increasing complexity of the hardware multiprocessor architectures as well as of

the real-time applications they support makes very difficult even impossible to apply the

theoretical real-time multiprocessor scheduling results currently available so I am using

simulation techniques to implement my algorithm

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 69

Simulation takes the input as vb.net i.e. scheduling algorithms are is executed on

simulation console which then produce the results in the form of Gantt charts of all the

inputting tasks and concerned CPU, following diagram shows the architecture

Accurancy

ACCURANCY

LABEL FIFO SJF P1 RR new

P0 12.08 2.34 7 QUNTM=2 3.55

P1 2.79 1.4 1 QUNTM=2 3.4

P2 5.45 1.28 4 QUNTM=2 7.11

P3
12.12 0.78 7 QUNTM=2 11.1

Check their effect by simulation:

FIGURE:

FIFO

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 70

RR

New

References

1. Listman A.L., Campbell R.H.,”A fault tolerant Scheduling problem”, IEEE Trans. On Software

Engineering, Vol. 47,no.5, may 1986,pp.1089-1095

2. Pandya M., and Malek M., “Minimum achievable utilization for fault tolerant processing of

periodic task,” Technical report TR-07-94, University of Taxas at Austin,March 1994.

3. Ramos –Theul S., “Enhancing Fault Tolerance of Real Time System Through Time Redundancy”

Carnegie Mellon University, 1993.

4. Krishna C.M.,and Shin Kang G.”On Scheduling Task with Quick Recovery From Failure” IEEE

Trans. On Computers, vol.,c-35,no.5,pp448-455.

Ramita Mehta et al, International Journal of Computer Science and Mobile Applications,

 Vol.2 Issue. 11, November- 2014, pg. 62-71 ISSN: 2321-8363

©2014, IJCSMA All Rights Reserved, www.ijcsma.com 71

5. Tsuchiya T.,Kakuda Y.,and Kikuno T., ”Fault Tolerant Scheduling Algorithm for Distributed Real

Time System”

6. Librato Frank, Melhaem Rani, and Moss Deniel,” Tolerant of Multiple Transient Faults For

Periodic Tasks in hard Real Time System”, IEEE Trans on Software Engineering, Vol., Se-6

7. Mosse Daniel, Meihem Rani , and Ghosh Sunondo.”Non Preemptive Real Time Scheduler with

Recovery From Transiant faults and its and its Implementation “, IEEE Trans on software

Engineering, vol.29, no. 8, Augest 2003

8. Oh.Y., and Son S.H. ,”Enhancing Fault Tolerance in Rate Monotonic Scheduling in Real Time

System “, International Journal of Time Critical Computing Systems ,vol.7, no.3.

9. Dhall S.K., and Liu C.L., “On Real Time Scheduling Problem” International journal on Operation

research vol.26, pp127-140.

10. Liu C.L., and Layland J.W.,”Scheduling Algorithm for Multiprogramming For Hard Real Time

System” Journal ACM, Vol.20, no.1, pp 40-61.

11. Lehoczky J.P.,Sha L., and Ding Y., “The Rate of Monotonic Scheduling Algorithms Exact

Characterization and average case Behaviour,” IEEE Real Time System Symposium,pp. 166-177

