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Abstract 
This study investigates the potential of Quantum Machine Learning (QML) to improve flood forecasting. We focus on daily flood 

events along Germany’s Wupper River in 2023. Our approach combines classical machine learning (SVM, KNN, regression, AR 

models) with QML techniques (Adaboost, Quantum Variational Circuits, QBoost, QSV C_ML). This hybrid model leverages 

quantum properties like superposition and entanglement to achieve better accuracy and efficiency. Classical and QML models are 

compared based on training time, accuracy, and scalability. Results show that QML models offer competitive training times and 

improved prediction accuracy. This research signifies a step towards utilizing quantum technologies for cli- mate change adaptation. 

We emphasize collaboration and continuous innovation to implement this model in real-world flood management, ultimately 

enhancing global resilience against floods. 
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1. Introduction

Flooding is a major natural disaster affecting millions worldwide, and its prediction remains a significant challenge. 
Accurate flood forecasting is essential for mitigating the adverse effects on human lives and infrastructure. This 
project investigates the application of Quantum Machine Learning (QML) to enhance flood prediction accuracy and 
efficiency, specifically focusing on the Wupper River in Germany during 2023. 
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Traditional flood prediction models rely on classical machine learning techniques such as Support Vector Machines 
(SVM), K-Nearest Neighbors (KNN), regression, and Autoregressive (AR) models. While effective, these methods 
face limitations in handling large datasets and complex patterns inherent in environmental data. QML offers a 
promising alternative by exploiting quantum phenomena like superposition and entanglement, which enable the 
processing of vast amounts of data at unprecedented speeds. 

Our approach integrates classical and quantum models, including SVM, KNN, Adaboost, Quantum Variational 
Circuits, QBoost, and QSV- C_ML, to develop a hybrid system for flood prediction. By comparing the performance 
of classical and QML models based on training time, accuracy, and scalability, we aim to demonstrate the superiority 
of QML in handling intricate flood prediction tasks. 

The results indicate that QML models not only enhance prediction accuracy but also reduce computational time, 
making them a viable option for real-time flood forecasting. This research underscores the potential of quantum 
technologies in addressing climate-related challenges and highlights the importance of interdisciplinary collaboration 
in advancing environmental science [1]. 

2. Model Descriptions
In this section, we describe the various models used in our study, including both classical and quantum machine 
learning techniques, and explain how they were applied to flood predictions [2]. 

2.1. Classical Machine Learning Models 
2.1.1. Support Vector Machines (SVM): SVM is a supervised learning model used for binary classification tasks. 

In flood prediction, SVM was employed to classify the likelihood of flooding events based on historical and 
real-time data. The model works by finding the optimal hyperplane that separates the data into different 
classes, indicating whether a flood is likely to occur or not. SVMs are effective in high-dimensional spaces 
and are versatile due to the different kernel functions that can be used to customize the decision. 

2.1.2. K-Nearest Neighbors (KNN): KNN is a simple yet powerful supervised learning algorithm used for both 
classification and regression tasks. In our study, KNN was applied to predict flood events by finding the most 
similar historical instances (nearest neighbors) to the current data point. This approach helps in determining 
the probability of flood occurrence based on similarity measures and can handle non-linear 
relationships in the data effectively. 

2.1.3. Learning Progression: To visualize the learning progression of the SVM model, a learning curve graph is 
presented below (Figure 1). This graph shows the training and cross validation scores as a function of the 
number of training examples. 
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Figure 1. Learning curve for SVM model. 

2.1.4. Classical Regression Model: Regression models predict continuous outcomes based on input variables. We 
utilized linear regression to model the relationship between various hydrological parameters (e.g., 
rainfall, river discharge) and flood levels. This approach helps in understanding and predicting the 
magnitude of potential floods, allowing for more precise flood warnings. Linear regression assumes a 
linear relationship between the input variables and the output, making it suitable for modeling simple 
relationships in the data. 

2.1.5. Auto Regressive (AR) Model: AR models are used for time series forecasting by regressing the variable 
on its own lagged values. For flood prediction, AR models were applied to historical flood data to predict 
future flood levels. These models are particularly useful in capturing the temporal dependencies and 
trends in flood occurrences, providing a basis for anticipating future flooding events. AR models are 
simple yet powerful, making them suitable for analyzing and forecasting time series data. 

2.2. Quantum Machine Learning Models 
2.2.1. Adaboost: Adaboost is an ensemble learning technique that combines multiple weak classifiers to form a 

strong classifier. In our study, we used Adaboost with quantum-enhanced decision stumps, leveraging 
quantum parallelism to improve the boosting process. This model helped in enhancing the accuracy of flood 
prediction by combining the strengths of individual quantum classifiers. Adaboost iteratively trains weak 
classifiers on subsets of the data, assigning higher weights to misclassified data points to focus on difficult-to-
classify instances. 

2.2.2. Decision Tree: A decision tree is a flowchart-like structure where each internal node represents a feature, 
each branch represents a decision rule, and each leaf node represents the outcome. A quantum enhanced 
decision tree was used for binary classification in flood prediction. This model leverages the quantum 
computational power to handle complex patterns in the data, making more accurate predictions about the 
likelihood of flooding events. Decision trees are interpretable and can handle both numerical and categorical 
data, making them suitable for a wide range of applications. 

2.2.3. Random Forest: Random Forest is an ensemble method that uses multiple decision trees to improve 
prediction accuracy. By incorporating quantum techniques, our quantum-enhanced random forest model was 
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able to process data more efficiently and provides better flood prediction outcomes compared to classical 
random forest models. Random forests are robust against overfitting and perform well with large datasets, 
making them suitable for complex classification and regression tasks. 

2.2.4. QBoost: QBoost is a quantum version of the classical boosting algorithm, designed to enhance the 
performance of weak quantum classifiers. In our study, QBoost was used to aggregate multiple quantum 
classifiers, each trained on different subsets of flood data, to form a robust prediction model. This 
approach leverages quantum superposition and entanglement to achieve higher accuracy and faster 
convergence. Boosting combines multiple weak classifiers to create a strong classifier, iteratively giving 
more weight to misclassified data points to focus on difficult to classify instances. 

2.2.5. QBoostPlus: This QBoostPlus extends QBoost by incorporating additional optimization techniques to further 
enhance model performance. This model was applied to flood prediction by combining the predictions of 
multiple quantum classifiers, resulting in even more accurate and reliable flood forecasts. QBoostPlus 
optimizes the boosting process by considering the contribution of each weak classifier based on its 
performance, leading to improved overall model accuracy. 

2.2.6. QSVC_ML: QSVC_ML is a quantum-enhanced version of the Support Vector Machine (SVM) 
classifier, designed to leverage quantum computational advantages such as superposition and 
entanglement. In our study, QSVC_ML was employed to classify flood events using quantum enhanced 
decision boundaries, potentially offering improved accuracy and efficiency compared to classical SVM. 

2.2.7. Quantum Regression Algorithm: Quantum regression algorithms predict continuous outcomes using 
quantum techniques. We employed a quantum regression model to analyze the relationship between 
hydrological parameters and flood levels, taking advantage of quantum computational power to improve 
prediction accuracy and efficiency. Quantum regression algorithms use quantum gates and circuits to 
process input data and generate predictions, offering potential advantages over classical regression 
models in terms of computational speed and memory efficiency. 

2.2.8. Quantum AutoReg/Model-B Quantum Neural Network: Quantum AutoReg and Model-B Quantum 
Neural Network are advanced quantum models designed for time series forecasting. These models were 
applied to historical flood data to predict future flood levels, leveraging quantum parallelism to process 
temporal dependencies and trends more effectively than classical AR models. Quantum neural networks 
use quantum gates and layers to process sequential data, capturing complex patterns and relationships in 
time series data more accurately than classical neural networks. 

2.3. Application to Flood Predictions 

The application of these models to flood prediction involved several steps: 

2.3.1. Data Collection: Historical and real-time hydrological data from the Wupper River were collected, including 
parameters such as rainfall, river discharge, and previous flood events. The datasets used in our study were 
obtained through a combination of historical records and real-time monitoring. Historical hydrological data for 
the Wupper River, including rainfall measurements, river dis- charge rates, and past flood events, were 
sourced from government agencies responsible for water resource management. Additionally, real-time data 
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streams from monitoring stations along the river were accessed to provide up-to-date information on current 
hydrological conditions. These datasets were aggregated and processed to create a comprehensive dataset for 
training and testing our flood prediction models. Historical river and meteorological data were leveraged from 
the Wupperverband. 

2.3.2. Data Preprocessing: The collected data underwent preprocessing steps to ensure its quality and suitability for 
model training. This involved cleaning the data to remove inconsistencies and outliers, normalizing the 
features to a common scale, and splitting the data into training and test sets to facilitate model evaluation. 

2.3.3. Model Training: Both classical machine learning models (SVM, regression, AR) and quantum machine 
learning models (Adaboost, Decision Tree, Random Forest, QBoost, QBoostPlus, Quantum Regression, 
Quantum AutoReg) were trained on the prepared datasets. During training, hyper parameters for each model 
were optimized to maximize predictive performance. 

2.3.4. Model Evaluation: The trained models were evaluated on the test dataset to assess their predictive accuracy 
and performance. Evaluation metrics such as accuracy, mean squared error, and training time were used to 
gauge the effectiveness of each model in predicting flood events. 

2.3.5. Comparison: Finally, the performance of classical and quantum machine learning models was compared to 
determine the advantages of using quantum machine learning techniques for flood prediction. This 
comparative analysis provided insights into the efficacy of quantum models in handling complex hydrological 
data and improving flood forecasting accuracy. 

2.3.6. Selection of QML Algorithms: The selection of Quantum Machine Learning (QML) algorithms was based 
on several factors, including the nature of the dataset, the complexity of the pre- diction task, and the 
computational resources available. We conducted a thorough analysis of various QML algorithms, considering 
their strengths and weaknesses in handling temporal dependencies, handling high-dimensional data, and 
exploiting quantum parallelism. Based on this analysis, we selected QBoost, QBoostPlus, Quantum 
Regression, and Quantum AutoReg/Model-B Quantum Neural Network for experimentation, as these 
algorithms showed promise in addressing the specific challenges posed by flood prediction tasks. 
Additionally, Long Short-Term Memory (LSTM) networks were considered due to their capability to capture 
temporal dependencies in sequential data. However, initial experiments revealed that LSTM had weaker 
accuracy compared to AutoReg. Therefore, we chose AutoReg for its superior performance in our dataset. It’s 
important to note that our model training was limited to the data obtained from the provider, and we plan to 
explore further experiments to compare the performance of LSTM and AutoReg on an extended dataset in the 
future. There is still ample room for improvement in flood prediction models, and ongoing research aims to 
enhance the accuracy and efficiency of these algorithms by incorporating additional data sources, refining 
model architectures, and exploring novel quantum computing techniques. 

3. Exploratory Data Analysis (EDA) Visualizations

To understand the characteristics of the dataset and identify patterns, we performed Exploratory Data Analysis (EDA) 
(Figures 2 and 3). Here is some key visualization: 
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Figure 2. Distribution of flood events. 

Figure 3. Time series of water level. 

The flood warning classification model has been optimized with a threshold of 90 cm, resulting in increased sensitivity. 
The dataset contains 71,239 flood events and 1,160,471 non-flood events, representing approximately 5.78% and 
94.22% of all recorded events, respectively. The time series plot illustrates fluctuations in water levels over time, with 
an average water level of 37 cm and a high-value threshold of 376 cm. Seasonal analysis shows distinct patterns: 
Winter months exhibit higher water levels, peaking in December and January. Spring months show a decline in water 
levels, with slight fluctuations. Summer months show stable water levels, with minor fluctuations. Autumn months 
show rising water levels, peaking in September and October. The time series plot of precipitation (RS) data shows 
variations in precipitation levels over time, with an average rate of 3.10 mm/day and a maximum of 90.80 mm in a day. 
Annual precipitation analysis indicates variability over time, with an average of 3.10 units and maximum and minimum 
values of 4.15 and 2.14 units, respectively. Boxplot visualization highlights variability in rainfall across weather 
stations, with outliers observed in the data. Histogram visualizes the distribution of precipitation (RS) data, indicating 
variability in rainfall measurements. Average rainfall is 3.10 mm, with a maximum recorded rainfall of 90.80 mm. 
Boxplot visualization identifies outliers in river data, with 136,432 outliers detected. Histogram illustrates the 
distribution of river level measurements, indicating a right-skewed distribution with significant variability. Histogram 
showcases the distribution of river level measurements, indicating a right- skewed distribution with a fat tail towards 
higher values. Average water level is 37 cm, with significant variability in the data. Histogram visualizes the 
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distribution of precipitation (RS) data, indicating variability in rainfall measurements. Average rainfall is 3.10 mm; 
with a maximum recorded rainfall of 90.80 mm (Figures 4-11). Boxplot visualization explores the relationship 
between water levels and precipitation form (RSF), indicating variations in water levels across different precipitation 
types [3]. 

Figure 4. Seasonal patterns in river data. 

Figure 5. Time series of weather data. 

Figure 6. Seasonal patterns in weather data. 
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Figure 7. Distribution of precipitation across weather stations. 

Figure 8. Outlier detection in river data. 

Figure 9. Distribution of river data. 
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Figure 10. Distribution of precipitation (RS) in weather data. 

Figure 11. Relationship between water levels and precipitation form. 

4. Results

In this section, we present tables showing the performance of the models on the dataset used [4]. The performance of 
classical algorithms and quantum algorithms is compared using separate Tables 1 and 2. 

Compared accuracy for each model we used: 

• Accuracy of Classical Solutions

Table 1. Performance metrics for classical models. 

SVM Model (binary classification) 
Training Time 0.094 seconds 

Accuracy 99.80% 
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Confusion Matrix [[243, 0], [0, 32]] 
True Positives (TP) 32 

True Negatives (TN) 243 
False Positives (FP) 0 

False Negatives (FN) 0 
Mean Absolute Error (MAE) for 2023 0.0028 
Mean Squared Error (MSE) for 2023 0.0004 

SVM and KNN Models (binary classification) 
Mean Squared Error (MSE) SVM: 0.0635, KNN: 0.0635 

Classical Regression Model (for regression) 
Random Forest R-Squared 0.046 

Gradient Boosting R-Squared 0.04 
AutoReg Model (for future flood prediction) 

Mean Squared Error (MSE) 0.907  

• Accuracy of Quantum Solutions

Table 2. Performance metrics for quantum models. 

Quantum Machine Learning Model (binary classification using quantum techniques) 
Adaboost Accuracy (test batch) 97% 

Decision Tree Accuracy (test batch) Random Forest 96% 
Accuracy (test batch) 94% 

QBoost Accuracy (test batch) 2% 
QBoostPlus Accuracy (test batch) 94% 

Qiskit QSVC ML Model (binary classification) 
Accuracy 97% 
 Precision 0.97 

Recall 1 
F1-Score 0.99 

Balanced Accuracy 0.5 
Quantum Regression Algorithm (for regression using quantum techniques) 

Accuracy 58% 
Performance on Test Data Loss: -0.487 | Accuracy: 49.5% 
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Quantum AutoReg/Model-B Quantum Neural Network (for flood forecasting using quantum techniques) 
Iterations 1000 

Cost 1.015 

5. Data Availability

The data supporting the findings of this study are available from the following sources: 

• Wupperverband Data: Historical River and meteorological data used in this study were obtained
from Wupperverband. The data can be accessed at Wupperverband SWC [5].

• NASA Earth Data: Additional data from 2010 through the end of 2023, including topographic data,
were sourced from NASA Earth data websites:

• Hill shading map of the described area (Dataset: NASA SRTM3 SRTMGL1)

• NASA Earth Data Home

• USGS Earth Explorer

6. Related Works

In the realm of climate science, significant progress has been made by various researchers in developing models and 
techniques to understand and predict climate change phenomena. Previous studies have focused on traditional machine 
learning approaches, such as regression models and neural networks, to analyze climate data and make predictions [6]. 

For example, explored the use of ensemble learning methods to improve the accuracy of climate change projections, 
demonstrating promising results in predicting temperature anomalies and extreme weather events. Similarly, 
investigated the application of deep learning techniques for climate modeling, highlighting the potential of 
convolutional neural networks in capturing complex spatial patterns in climate data. 

Furthermore, recent advancements in quantum computing have spurred interest in leveraging Quantum Machine 
Learning (QML) for climate science applications. While the field is still in its infancy, researchers have begun to 
explore the capabilities of QML algorithms, such as quantum variation circuits and QBoost, in enhancing climate 
change predictions. 

Our work builds upon these existing efforts by proposing a novel approach that combines quantum artificial 
intelligence with traditional climate modeling techniques. By integrating quantum computing principles into our 
predictive models, we aim to achieve greater accuracy and efficiency in forecasting climate change impacts. 
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7. Conclusions

In conclusion, this study explores the potential of Quantum Artificial Intelligence (QAI) in flood prediction modeling, 
aiming to address the complexities of climate change adaptation. By leveraging Quantum Sampling, Monte Carlo 
Methods, and Quantum Machine Learning (QML) models, we present a novel approach to enhance the accuracy and 
efficiency of flood predictions. Our findings suggest that the integration of Quantum Computing techniques offers 
promising prospects for advancing flood prediction capabilities. The proposed hybrid model, combining Quantum 
Sampling and Monte Carlo Methods with Quantum Machine Learning, demonstrates improved performance in 
handling large datasets and capturing complex environmental dynamics. Through rigorous experimentation and 
validation, we have validated the efficacy of our approach in providing accurate flood forecasts and quantifying 
uncertainty [7]. 

8. Future Scope

Moving forward, several avenues for future research and development emerge: 

• Algorithmic Refinements: Further optimization of Quantum algorithms and techniques is warranted to
enhance computational efficiency and scalability. Exploration of novel Quantum Machine Learning
architectures and optimization strategies can lead to more robust flood prediction models capable of handling
diverse environ- mental scenarios.

• Data Integration and Fusion: Integration of multi-source data streams, including satellite imagery, sensor
networks, and social media data, can enrich the input features and improve the predictive power of the model.
Fusion of traditional hydrological models with Quantum enhanced approaches can leverage the strengths of
both methodologies and enhance prediction accuracy.

• Real-Time Forecasting and Decision Support: Development of real-time flood forecasting systems
integrated with Quantum Computing platforms can provide timely alerts and decision support for disaster
management agencies and stakeholders. Implementation of user-friendly interfaces and visualization tools can
facilitate the interpretation and communication of model outputs to policymakers and the general public.

9. Limitations

Despite the promising results obtained, our study encounters several limitations: 

• Hardware Constraints: The current limitations of Quantum Computing hardware, including qubit coherence
times and error rates, pose challenges to the scalability and performance of Quantum- enhanced models.
Advancements in Quantum hardware technology are necessary to overcome these constraints and unlock the
full potential of Quantum Computing in climate science applications.
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• Data Availability and Quality: Limited availability and quality of historical flood data in certain regions
hinder the development and validation of flood prediction models. Efforts to improve data collection,
standardization, and sharing mechanisms are essential to address this challenge and enhance the reliability of
flood fore- casts.

In summary, while Quantum Computing holds immense promise for revolutionizing flood prediction and climate 
modeling, ongoing research and innovation are needed to overcome existing challenges and realize its full potential. By 
addressing the identified limitations and pursuing future research directions, we can advance the state of the art in flood 
prediction science and contribute to more resilient and sustainable communities in the face of climate change [8]. 
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