
 
Chaitali Patel et al, International Journal of Computer Science and Mobile Applications, 

Vol.1 Issue. 5, November- 2013, pg. 51-56                              ISSN: 2321-8363 
 

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com                                                                                              51 

 
An Apriori based Algorithm for Frequent Pattern 

Mining 
 
 
 

Chaitali Patel                                  Deepali Koul 
Computer Department                                                       Computer Department 

Kautilya institute of  technology                                          Kautilya institute of technology 
chaitali.er@gmail.com  deep.koul22@gmail.com 

 
Abstract: 
 
Frequent pattern mining is a widely researched area 
in the field of data mining with wide range of 
applications.  Mining  frequent  patterns  from  large 
scale databases has emerged as an important problem 
in data mining and knowledge discovery community. 
A number of algorithms have been proposed to 
determine frequent pattern. Apriori algorithm is the 
very first algorithm proposed in this area. With the 
time a number of changes proposed in Apriori to 
enhance the performance in term of time and number 
of database pass.  In this paper three different frequent 
pattern mining approaches (Record filter, Intersection 
and Proposed Algorithm) are given based on classical 
Apriori algorithm. In these approaches Record filter 
approach proved better than classical Apriori 
Algorithm, Intersection approach proved better than 
Record filter approach and finally proposed algorithm 
proved that it is much better than other frequent 
pattern mining algorithm. In last we perform a 
comparative study of all approaches on dataset of 
2000 transaction. 

 
Keywords: 

 
Data    Mining,    Frequent    Patterns,    Knowledge 
Discovery, Pattern mining. 

 
1. Introduction: 

 
This section introduces the basic concept of frequent 
pattern mining for the discovery of interesting 
associations and correlations between item sets in 
transactional and  relational  database.  Frequent 
pattern   are   patterns   that   appear   in   a   dataset 
frequently.  For example, a set of items, such as milk 
and bread that appear frequently together in a 
transaction data set is a frequent item set. Frequent 
patterns are prevalent in real-life data, such as sets of 
items b o u g h t  t o g e t h e r  i n  a  
s u p e r m a r k e t .  Frequent pattern mining has been 
successfully applied to association rule mining, 
pattern-based classification, clustering, finding 
correlated items, and has become an essential data-
mining task. 

 
 
 
 
 
Frequent item sets play an essential role in many data 
mining tasks that try to find interesting patterns from 
databases. The original motivation for searching 
frequent pattern came from the need to analyze so 
called   supermarket   transaction   data,   that   is,   to 
examine customer behavior in terms of the purchased 
products. Frequent Pattern describe how often items 
are  purchased  together.  Since  their  introduction  in 
1993 by Argawal et al. [1], the frequent item set and 
association  rule  mining  problems  have  received  a 
great deal of attention. Within the past decade, 
hundreds of research papers have been published. 
Presenting new algorithms or improvements on 
existing algorithms to solve these mining problems 
more efficiently. In this chapter, we explain the basic 
frequent item set mining problems. 
 
2. Problem 
 
The problem is usually decomposed into two sub 
problems. 
1.           One   is   to   find   those   item   sets   whose 
occurrences  exceed  a  predefined  threshold  in  the 
database; those item sets are called frequent or large 
item sets. 
2.           The    second    problem    is    to    generate 
association rules from those large item sets with the 
constraints of minimal confidence. 
 
Let    = { i1, i2,  i3, i4……….   im  } be a set   of m 
distinct literals called items, D is a set of transactions 
(variable length) over . Each transaction contains a 
set  of  items  i1,  i2, i3, i4………..     ik        .  Each 
transaction  is  associated  with  an  identifier,  called 
TID.   An association rule is an implication of the 
form X  Y, where X, Y   and X   Y = 0. Here 
X  is  called  the  antecedent  and  Y  is  called  the



 
Chaitali Patel et al, International Journal of Computer Science and Mobile Applications, 

Vol.1 Issue. 5, November- 2013, pg. 51-56                              ISSN: 2321-8363 
 

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com                                                                                              52 

consequent of the rule. The rule X   Y holds in the 
transaction set D with confidence  if among those 
transactions that contain X  % of them also contain 
Y. The rule X  Y has support S in the transaction 
set D if S% of transactions in D contains X  Y. The 
selection of association rules is based on these two 
values (some additional constraints may also apply). 
These are two important measures of rule 
interestingness. They respectively reflect usefulness 
and certainty of a discovered rule. They can be 
described by the following equations: 

 
Support (X    Y) = Frequency (X  Y) / /D/ 
Confidence (X    Y) = Frequency (X  Y) / 
Frequency (X) where /D/ represents the total number 
of transactions (tuples) in D. 

 
Suppose one of the large item sets is Lk, Lk = {i1, i2, 
… , ik}, association rules with this item sets are 
generated in the following way: 

 
The first rule is {i1, i2, … ,ik-1} {ik}, by checking 
the confidence. This rule can be determined as 
interesting or not. Then other rule are generated by 
deleting the last items in the antecedent and inserting 
it to the consequent, further the confidences of the 
new  rules  are  checked  to  determine  the 
interestingness of them. These processes iterated until 
the antecedent becomes empty. Since the second sub 
problem is quite straight forward, most of the 
researches focus on the first sub problem. 

 
The first sub-problem can be further divided into two 
sub-problems: candidate large item sets generation 
process  and  frequent  item  sets  generation  process. 
We call those item sets whose support exceeds the 
support threshold as large or frequent item set. 

 
3. Apriori Algorithm for Frequent Pattern Mining 

 
Apriori is a algorithm proposed by R. Agrawal and R 
Srikant in 1994 [1] for mining frequent item sets for 
Boolean association rule. The name of algorithm is 
based on the fact that the algorithm uses prior 
knowledge of frequent item set properties, as we shall 
see following. Apriori employs an iterative approach 
known  as  level-wise  search,  where  k  item  set  are 
used to explore (k+1) item sets. There are two steps 
in each iteration. 
The first step generates a set of candidate item sets. 
Then, in the second step we count the occurrence of 
each candidate set in database and prunes all 
disqualified candidates (i.e. all infrequent item sets). 
Apriori uses two pruning technique, first on the bases 
of   support   count   (should   be   greater   than   user 

specified support threshold) and second for an item 
set to be frequent , all its subset should be in last 
frequent item set The iterations begin with size 2 item 
sets and the size is incremented after each iteration. 
The algorithm is based on the closure property of 
frequent item sets: if a set of items is frequent, then 
all its proper subsets are also frequent. 
 
3.1 Apriori Algorithm 
 
Initialize: k := 1, C1 = all the 1- item sets; 
read  the  database  to  count  the  support  of  C1   to 
determine L1. 
L1 := {frequent 1- item sets}; 
k:=2; //k represents the pass number// 
while (Lk-1 ≠ ) do 
begin 
Ck := gen_candidate_itemsets with the given Lk-1 

prune(Ck) 
for all transactions t  T do 
increment the count of all candidates in CK  that are 
contained in t; 
Lk := All candidates in Ck with minimum support ; 
k := k + 1; 
end 
Answer := k Lk ; 
 
The first weakness of this algorithm is the generation 
of a large number of candidate item sets. The second 
problem is the number of database passes which is 
equal to the max length of frequent item set. 
 
4.  Record  Filter  Approach  based  on  Apriori 
Algorithm for Frequent Pattern Mining 
 
Although we have made some changes in Apriori 
algorithm for frequent pattern mining and name this 
Record Filter approach and it is efficient as compare 
to the Apriori algorithm. We have suggest some 
changes which improve the efficiency of apriori, 
memory management and remove the complexity of 
process. Here we are presenting a different approach 
in Apriori algorithm to count the support of candidate 
item set. In the classical apriori algorithm, we check 
the occurrence of candidate item in each transaction 
of any length. In this when we count the support of 
candidate   set   of   length   k,   we   also   check   its 
occurrence  in  transaction  whose  length  may  be 
greater than , less than or equal to the k. But in the 
new approach we count the support of candidate set 
only in the transaction record whose length is greater 
than or equal to the length of candidate set, because 
candidate set of length k , can not exist in the 
transaction record of length k-1 , it may exist only in 
the transaction of length greater than or equal to k.



 
Chaitali Patel et al, International Journal of Computer Science and Mobile Applications, 

Vol.1 Issue. 5, November- 2013, pg. 51-56                              ISSN: 2321-8363 
 

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com                                                                                              53 

This approach has taken very less time as compared 
to classical Apriori. 

 
4.1  Record  filter  approach  based  on  Apriori 
Algorithm 

 
Initialize: k := 1, C1 = all the 1- item sets; 
read  the  database  to  count  the  support  of  C1   to 
determine L1. 
L1 := {frequent 1- item sets}; 
k:=2; //k represents the pass number// 
while (Lk-1 ≠ ) do 
begin 
Ck := gen_candidate_itemsets with the given Lk-1 

prune(Ck) 
for all transactions t whose length is greater than or 
equal to k  T do 
increment the count of all candidates in CK  that are 
contained in t; 
Lk := All candidates in Ck with minimum support ; 
k := k + 1; 
end 
Answer := k Lk ; 

 
In this new   approach we   require very less time in 
comparison to classical apriori  algorithm. 

 
5.   Intersection   Approach   Based   On   Apriori 
Algorithm for Frequent Pattern Mining 

 
In the previous section we have describe the Record 
filter approach based on Apriori, now we are 
suggesting  one  another  changes  in  Apriori  which 
gives the better result as compare to the Record Filter 
approach. The Intersection Algorithm is designed to 
improve the efficiency, memory management and 
remove the complexity of Apriori. Here we are 
presenting a different approach in Apriori algorithm 
to count the support of candidate item set. Basically 
this approach is more appropriate for vertical data 
layout, since Apriori basically works on horizontal 
data  layout.  In  this  new  approach,  we use  the  set 
theory concept of intersection. In Classical Apriori 
algorithm, to count the support of candidate set  each 
record is scanned one by one and check the existence 
of   each   candidate,   if   candidate   exists   then  we 
increase the support by one. This process takes a lot 
of time, requires iterative scan of whole database for 
each candidate set, which is equal to the max length 
of  candidate  item  set.  In  modified  approach,  to 

5.1 Intersection Algorithm Based On Apriori 
Initialize: K: = 1, C1 = all the 1- item sets; 
read  the  database  to  count  the  support  of  C1   to 
determine L1. 
L1 := {frequent 1- item sets}; 
k:=2; //k represents the pass number// 
while (Lk-1 ≠ ) do 
begin 
Ck: = gen_candidate_itemsets with the given Lk-1 

Prune (Ck) 
for all candidates in Ck do 

count the number of transactions that are common 
in each item  Ck 

Lk  := All candidates in Ck  with minimum 
support ; 

k := k + 1; 
end 
Answer := k Lk ; 
This  modified  (Intersect  Method)  approach,  takes 
only one data base pass to change the horizontal data 
layout to vertical datalayout.. 
 
6.  Proposed  Algorithm  Based  On  Apriori  for 
Frequent Pattern Mining 
In this new approach we have determined changes 
that are going to serve the best in the field of frequent 
pattern   mining.   In   this   new   approach,   we   are 
presenting an algorithm that uses the concept of both 
algorithm i.e. Record filter approach and Intersection 
approach in Apriori algorithm .To count the support 
of candidate item set ,we have considered both above 
mentioned approach. In this new approach, we use 
the set theory concept of intersection with the record 
filter approach.. In proposed algorithm, to calculate 
the support, we count the common transaction that 
contains in each element’s of candidate set, with the 
help of the intersect query of SQL.  In this approach, 
we have applied a constraints that we will consider 
only those   transaction that contain at least k items, 
not less than k in process of support counting for 
candidate set of k length. This approach requires very 
less time as compared to all other approaches. 
 
6.1 Proposed Algorithm Based On Apriori 
 
Initialize: K: = 1, C1 = all the 1- item sets; 
read  the  database  to  count  the  support  of  C1   to 
determine L1. 
L1 := {frequent 1- item sets}; 
k:=2; //k represents the pass number//

calculate   the   support   we   count   the   common 
transaction   that   contains   in   each   element’s   of 
candidate set, by using the intersect query of SQL. 

while (Lk-1 

begin 
≠ ) do

This approach requires very less time as compared to 
classical Apriori. 

Ck: = gen_candidate_itemsets with the given Lk-1 
Prune (Ck)



 
Chaitali Patel et al, International Journal of Computer Science and Mobile Applications, 

Vol.1 Issue. 5, November- 2013, pg. 51-56                              ISSN: 2321-8363 
 

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com                                                                                              54 

Records 
(Time in 
Seconds) 

Apriori 
(Time in 
Seconds) 

Proposed 
(Time in 
Seconds) 

400 6 3 

800 20 9 

1200 38 11 

1600 70 18 

2000 143 29 
 

Records Apriori 
(Time in Seconds) 

Record filter 
(Time in Seconds) 

400 6 4 

800 20 17 

1200 38 33 

1600 70 64 

2000 143 132 

 

40
0 

12
00

 

20
00

 

Ti
m

e 
in

 
Se

co
nd

s 

40
0 

 
80

0 
 12

00
 

 16
00

 
 20

00
 

for all candidates in Ck do 
count the number of transactions of atleast k length 

that are common in each item  Ck 

Lk  := All candidates in Ck  with minimum 
support ; 

k := k + 1; 
end 
Answer := k Lk ; 

 
In this modified (Intersect Method) approach we 
require only   one data base pass to change the 
horizontal 

7.2   Time   Comparison   between   Apriori   and 
Intersection 
It   is   clear   from   the   figure2   and   Table2   that 
Intersection approach is efficient than the apriori 
algorithm. In    the Analysis process when we have 
taken the 400 record apriori takes 6 second while 
Intersection takes the 4 second when we increase the 
size of record we can see in the table the results are 
very efficient related to time.

7.  Time  Comparison  in  Apriori,  Record  Filter, 
Intersection and Proposed Algorithm 

 
7.1   Time   Comparison   between   Apriori   and 
Record Filter 
It is clear from the figure1 and Table1 that Record 
filter approach is efficient than the classical apriori 
algorithm. In    the Analysis process when we have 
taken the 400 record apriori takes 6 second while 
Record filter takes the 4 second when we increase the 
size of record we can see in the table the results are 
very efficient related to time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
140 
120 
100 
80 
60 
40 
20 

0 

 
 
 
 
 
 
 
 
 
 
Table-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apriori 
Intersection

 
 

No. of Records 
 
 
 

Figure-2 
 

Table –1 
 

140 
120 
100 
80 
60 
40 
20 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-1 

 
 
 
 
Apriori 
Record Filter 

7.3   Time   Comparison   between   Apriori   and 
Proposed Algorithm 
It is clear from the figure3 and Table3 the Proposed 
Algorithm is efficient than the apriori algorithm. In 
the Analysis process when we have taken the 400 
record apriori takes 6 second while Proposed 
Algorithm takes the 3 second when we increase the 
size of record we can see in the table the results are 
very efficient related to time. In the conclusion we 
can say that Proposed Algorithm is better than the 
other three algorithms.



 
Chaitali Patel et al, International Journal of Computer Science and Mobile Applications, 

Vol.1 Issue. 5, November- 2013, pg. 51-56                              ISSN: 2321-8363 
 

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com                                                                                              55 

No. of 
Records 

 

Apriori 
 

Intersection 

400 6 4 

800 20 14 
1200 38 18 
1600 70 25 

2000 143 35 
 

Ti
m

e 
in

 S
ec

on
ds

 

40
0 

80
0 

12
00

 

16
00

 

20
00

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

140 
120 
100 
80 
60 
40 
20 
0 

 
 
 
 
 
 
 
 
 
 
 
 
Table-3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apriori 
Efficient 

7.4 Time Comparison between Classical Apriori, 
Record  Filter,  Intersection  and  Proposed 
algorithm 
 
For  the  comparative  study  of  Classical  Apriori, 
Record Filter, Intersection and Proposed Algorithm, 
we have taken a database of 2000 transaction of 50 
items. In this analytical process we considered 500 
transactions to generate the frequent pattern with the 
support count 10% .We have repeated the same 
process by increasing the transaction. Here we first 
compare the result of all approaches with Classical 
Apriori Algorithm because all approaches are based 
on Classical Apriori. After that we compare all 
approaches to find out the best. After the experiment 
on all approaches, we have designed a graph and 
summarized a result in the following table

 
 

No. of Records 
 
 

Figure-3 
 
 
 

 

Records 
(Time in Seconds) 

Apriori 
(Time in 
Seconds) 

 

Record Filter 
(Time in Seconds) 

 

Intersection 
(Time in Seconds) 

 

Proposed 
(Time in Seconds) 

400 6 4 4 3 

800 20 17 14 9 

1200 38 33 18 11 

1600 70 64 25 18 

2000 143 132 35 29 
Table4



 
Chaitali Patel et al, International Journal of Computer Science and Mobile Applications, 

Vol.1 Issue. 5, November- 2013, pg. 51-56                              ISSN: 2321-8363 
 

© 2013, IJCSMA All Rights Reserved, www.ijcsma.com                                                                                              56 

160  
140 
120 
100 
80     

Ti
m

e 
in

 S
ec

on
ds

 

 
 
 
 
 
 
 

60 
40 
20 
0 

400       800      1200     1600     2000 
 

No. of Records 

Apriori 
Record Filter 
Intersection 
Proposed

 

 
 

Figure-4 
Conclusion: 

 
Association rule mining has a wide range of 
applicability such as market basket analysis, medical 
diagnosis/ research, website navigation analysis, 
homeland security and so on. In this paper, we 
surveyed the list of existing association rule mining 
techniques and compare these algorithms with our 
modified approach. The conventional algorithm of 
association rules discovery proceeds in two and more 
steps but in our approach discovery of all frequent 
item will take the same steps but it will take the less 
time as compare to the conventional algorithm. We 
can conclude that in this new approach, we have the 
key ideas of reducing time. As we have proved above 
how the proposed Apriori algorithm take less time 
than that of classical apriori algorithms. That is really 
going to be fruitful in saving the time in case of large 
database. This key idea is surely going to open a new 
gateway for the upcoming researcher to work in the 
filed of the data mining. 

 
References 

 
[1]Agrawal, R., Imielinski, T., and   Swami, A. N. 1993. Mining 
association rules between sets of items in large databases. In 
Proceedings of the 1993 ACM SIGMOD International Conference 
on Management of Data, 207-216. 
[2] Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining 
association rules. In Proc. 20th Int. Conf. Very Large Data Bases, 
487-499. 
[3] Agarwal, R. Agarwal, C. and Prasad V., A tree projection 
algorithm for generation of frequent itemsets. In J. Parallel and 
Distributed Computing, 2000. 
[4] R. Agrawal and R. Srikant. Fast algorithms for mining 
association rules. IBM Research Report RJ9839, IBM Almaden 
Research Center, San Jose, California, June 1994. 
[5] R.J. Bayardo, Jr. Efficiently mining long patterns from 
databases. In L.M. Haas and A. Tiwary, editors, Proceedings of the 
1998 ACM SIGMOD International Conference on Management of 
Data,  volume  27(2)  of  SIGMOD  Record,  pages  85–93.  ACM 
Press, 1998. 

 
 
[6] S. Parthasarathy, M. J. Zaki, M. Ogihara, S. Dwarkadas; 
Incremental and interactive sequence mining; Int'l Conf. on 
Information and Knowledge Management; 1999. 
[7] Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, 
Umeshwar Dayal; Multi-Dimensional Sequential Pattern Mining; 
Int'l Conf. on Information and Knowledge Management; 2001. 
[8] Assaf Schuster, Ran Wolff, and Dan Trock; Distributed 
Algorithm for Mining Association Rules; IEEE Int'l Conf. on Data 
Mining; November 2003. 
[9]  Wei-Guang  Teng,  Ming-Syan  Chen,  and  Philip  S.  Yu; 
Resource-Aware Mining with Variable Granularities in Data 
Streams; SIAM Int'l Conf. on Data Mining; 2004. 
[10] Adriano Veloso, Wagner Meira Jr., Marcio Carvalho, Srini 
Parthasarathy, Mohammed J. Zaki; Parallel, Incremental and 
Interactive Mining for Frequent Itemsets in Evolving Databases; 
Int'l Workshop on High Performance Data Mining: Pervasive and 
Data Stream Mining; May 2003. 
[11]    Adriano    Veloso,    Matthew    Eric    Otey,    Srinivasan 
Parthasarathy, Wagner Meira Jr.; Parallel and Distributed Frequent 
Itemset Mining on Dynamic Datasets; Int'l Conf. on High 
Performance Computing; 2003. 
[12] Haixun Wang, Wei Fan, Philip S. Yu, Jiawei Han; Mining 
Concept-Drifting Data Streams using Ensemble Classifiers; ACM 
SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining; 
August 2003. 
[13] Li Yang, Mustafa Sanver; Mining Short Association Rules 
with   One   Database   Scan;   Int'l   Conf.   on   Information   and 
Knowledge Engineering; June 2004. 
[14] Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, Aoying Zhou; 
False Positive or False Negative: Mining Frequent Itemsets from 
High Speed  ATransactional Data Streams; Int'l  Conf. on  Very 
Large Databases; 2004. 
[15] Qingguo Zheng, Ke Xu, Shilong Ma; When to Update the 
Sequential  Patterns   of   Stream   Data;   Pacific-Asia  Conf.   on 
Knowledge Discovery and Data Mining; 2003. 
[16]   Yunyue   Zhu,   Dennis   Shasha;   StatStream:   Statistical 
Monitoring of Thousands of Data Streams in Real Time; Int'l Conf. 
on Very Large Data Bases; 2002. 


